

Privacy Preserving Machine Learning

SAV Après-Midi, 31 August 2023

Daniel Meier, Swiss Re Juan Ramón Troncoso-Pastoriza, Tune Insight

Key take-aways

- Limited data availability for sensitive personal (Life & Health) data in practice (e.g., nFADP, 1 September 2023)
- 2. For sufficiently large and dense datasets, ML/DL methods outperform traditional models, creating value for policyholders and insurance companies
- 3. Privacy preserving methods can help to access data

Agenda

- Creation of synthetic health datasets
- Introducing 3 models to create health risk scores: Logistic regression, Cox regression, neural networks
- Homomorphic encryption

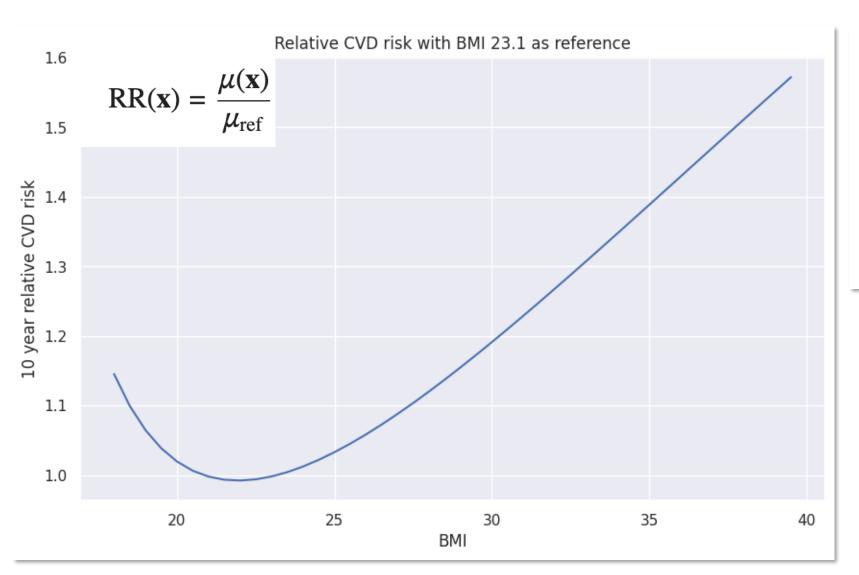
Paper and code soon available at actuarialdatascience.org

Actuarial Data Science

An initiative of the Swiss Association of Actuaries

Home	Actuarial Data Science Tutorials	Updates
ADS Tutorials	On this page we present all the tutorials that have been prepared by the working	Below, we provide the most recent changes to the website:
ADS Strategy	party. We are intensively working on additional ones and we aim to have approx. 10 tutorials, covering a wide range of Data Science topics relevant for actuaries.	15th Mar 23: Publication of
ADS Lectures / Courses		our new tutorial: SHAP for
ADS Regulatory / Ethics	All tutorials consist of an article and the corresponding code. In the article, we describe the methodology and the statistical model. By providing you with the code	<u>Actuaries: Explain any</u> <u>Model</u>
DS Lectures / Books	you can easily replicate the analysis performed and test it on your own data.	• 14th Oct 22: Publication of
External Courses	Case Study 14: SHAP for Actuaries: Explain any Model	our new tutorial: <u>Gini Index</u> and Friends
Newsletter	Article on SSRN	
About Us	Code on GitHub ; Notebook	Events
	Case Study 13: Gini Index and Friends Article on SSRN	Below, we provide upcoming events in Actuarial Data Science:
	Code on GitHub	• 16th May 2023: EAA Data

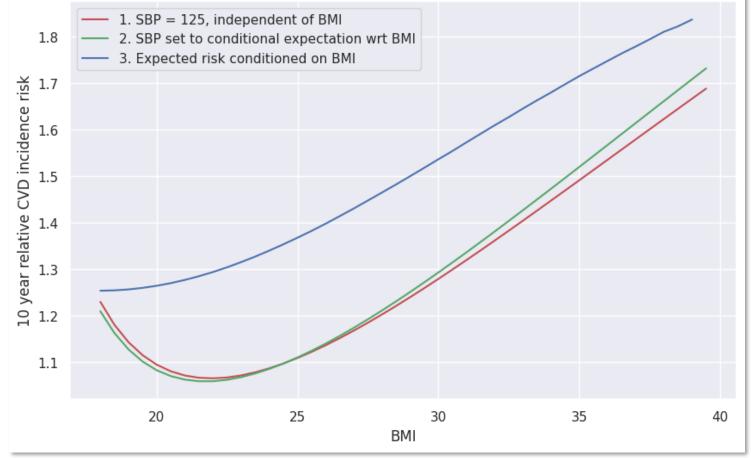
(Publicly) available health datasets


- CPRD, <u>https://cprd.com/data</u>
- MIMIC, https://physionet.org/about/database/
- IPUMS, https://healthsurveys.ipums.org/
- NHANES, <u>https://www.cdc.gov/nchs/nhanes/</u>
- Nightingale, <u>https://docs.nightingalescience.org/</u>
- UK Biobank, <u>https://www.ukbiobank.ac.uk/</u>
- IHME, https://ghdx.healthdata.org/
- •
- See also longitudinal study for other health datasets
 - Often, access is restricted to academic institutions and/or limited to a pre-defined research topic
 - Data volumes (and density) rather too low for ML
 - Access to more data sources (e.g., hospitals, GPs, insurance companies, etc.) – in a privacy preserving manner – is needed

Health risk scores, e.g., QRISK3 providing 10-year risk of a cardio-vascular disease (CVD)

ClinRisk	Welcome to	the QRISK [®]	3-2018 risk	calculator ht	tps://qrisk.or	g				
This calculator is o	only valid if you do no	ot already have a dia	gnosis of coronar	/ heart disease (incl	uding angina or hear	rt attack) or stroke/t	ransient ischaemic a	ttack.		
Neset			About	Copyright	Contact Os	Algonalin		UNCA		
About you			Your resul	ts						
Age (25-84):	35		Your risk of h	aving a heart attack	or stroke within the	next 10 years is:				
Sex:	Male Female	e		aving a near attack		-				
Ethnicity:	White or not stated					0.6	%			
UK postcode	e: leave blank if unkn	nown	In other word	ls, in a crowd of 100	people with the sam	ne risk factors as yo	ou, 1 are likely to hav	e a heart attack or	stroke within the next 10 years.	
Postcode:							<u>.</u>			
Clinical informa	tion					ÖÖÖÖÖÖ	<u> </u>			
		~					900000 900000			
Smoking status Diabetes status										
	t attack in a 1st degr	ee relative < 60?					50000			
-	disease (stage 3, 4						50000			
Atrial fibrillation										
On blood press	sure treatment?			Risk of a heart attack or stroke						
Do you have m	nigraines?		Your soore h	Vous some kan been selevisted using estimated data as some information was left blank						
Rheumatoid ar	thritis? 🗌			Your score has been calculated using estimated data, as some information was left blank.						
Systemic lupus	s erythematosus (SLI	E)? 🗌	Your body m	ass index was calcu	lated as 23.15 kg/m ²	2.				
Severe mental (this includes schi moderate/severe	zophrenia, bipolar disord	der and	How does y	How does your 10-year score compare?						
On atypical ant	tipsychotic medicatio	n? 🗌			Your score				1	
Are you on reg	ular steroid tablets?			Your 10-year QRISK [®] 3 score 0.6%						
•	or treatment for erec	tile disfunction?		The score of a healthy person with the same age, sex, and ethnicity 0.7%						
Leave blank				Relative risk ^{**} 0.9 Your QRISK [®] 3 Healthy Heart Age ^{***} 35						
Cholesterol/I	HDL ratio: 3.5				Your QRISK*3 Heal	iny Heart Age				
	d pressure (mmHg):			• 1 r	This is the score of a healthy per- atio of 4.0, a stable systolic bloo	son of your age, sex and ethnic d pressure of 125, and BMI of	c group, i.e. with no adverse clini 25.	cal indicators and a cholestero	I	
	viation of at least two most "Your relative risk is your risk divided by the healthy person's risk. lic blood pressure readings 10 "Your QRISK®3 Healthy Heart Age is the age at which a healthy person of your sex and ethnicity has your 10-year QRISK®3									
(mmHg):					core.		,			
Body mass										
Height (cn										
Weight (kg	3): 15 om to jectangle xly fixes axis									
								Sou	rce: qrisk.org	
Calculate risk										

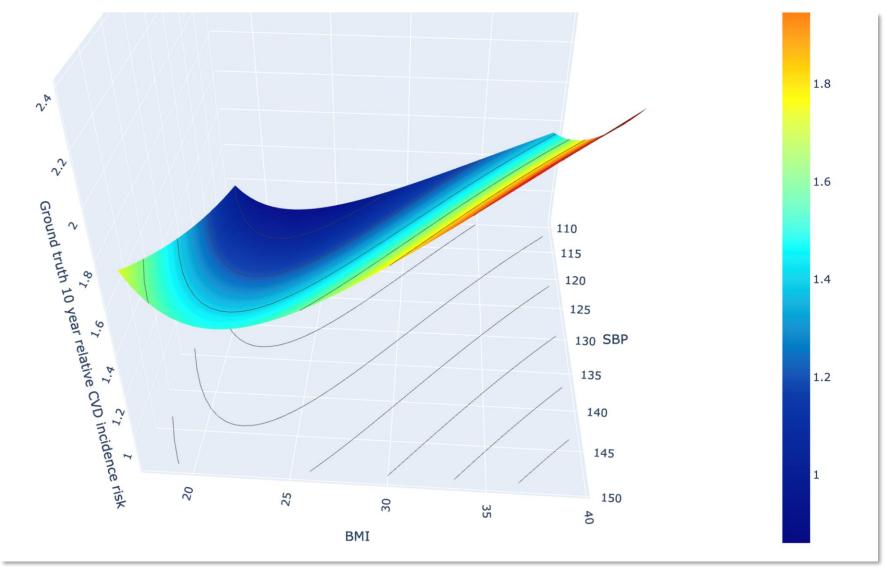
Swiss Re


Relative risk with respect to a reference person of same age, gender

Country	Mean BMI females	Mean BMI males
Samoa	33.5	29.9
USA	28.8	28.8
UK	27.1	27.5
Germany	25.6	27.0
Italy	25.2	26.8
France	24.6	26.1
Switzerland	23.8	26.7
Japan	21.7	23.6

Country	Life exp. females	Life exp. females
Samoa	75.5	71.3
USA	81.5	76.5
UK	83.3	79.6
Germany	83.5	78.8
Italy	85.4	81.1
France	85.6	79.8
Switzerland	85.6	81.9
Japan	87.4	81.4

Various risk factors like BMI, systolic blood pressure (SBP) impact relative risk

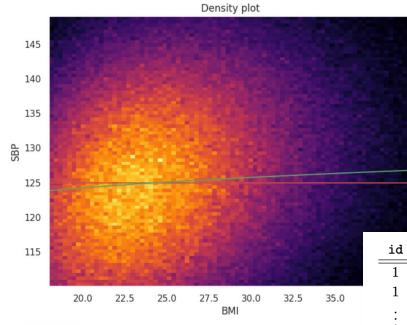


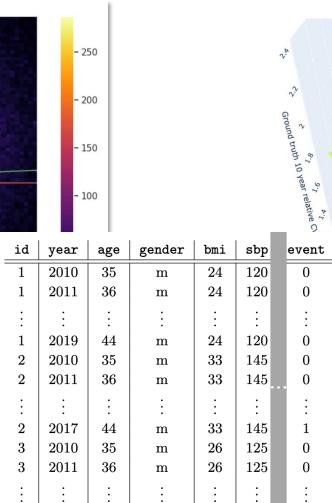
1. What is the risk of a person with a given BMI and all other attributes equal to the reference person, $\mu(BMI, SBP_{ref})$?

2. What is the risk of a person with a given BMI, and SBP set to the conditional expectation of SBP given BMI, $\mu(BMI, \mathbb{E}[SBP|BMI])$?

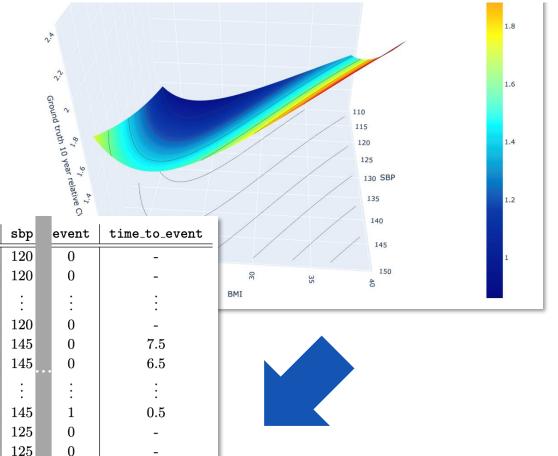
- 3. What is the expected risk of a person with a given BMI, $\mathbb{E}[\mu(\mathbf{x})|BMI]$?
- 4. What is the (causally implied) risk of the reference person when changing BMI, $\mathbb{E}[\mu(\mathbf{x})|do(BMI)]$?

Various risk factors like BMI, systolic blood pressure (SBP) impact relative risk

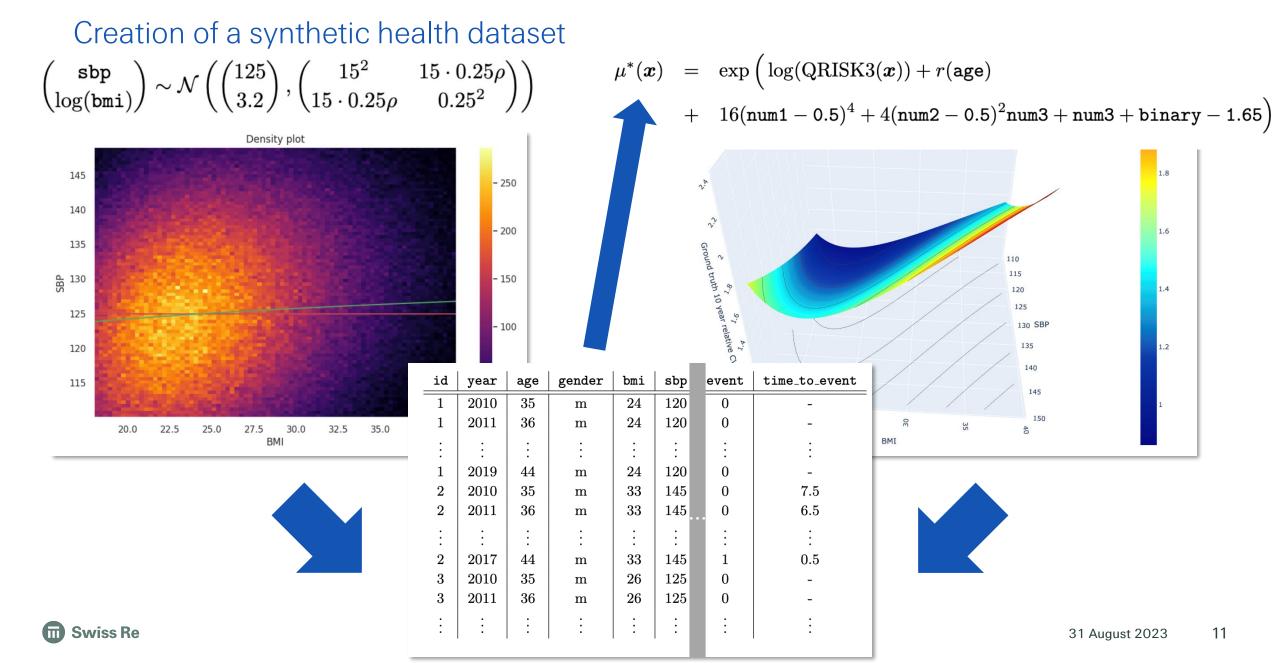



Creation of a synthetic health dataset

- id: an ID to uniquely identify a person,
- year: observation year of health information,
- age: age of the person at time year,
- gender: male (0)/female (1),
- bmi: body-mass-index (BMI), unit kg/m^2 ,
- sbp: systolic blood pressure (SBP), unit mmHg,
- sd_sbp: standard deviation of systolic blood pressure measurements, unit mmHg,
- tcl_hdl_ratio: total cholesterol level (TCL) divided by high-density lipoprotein level (HDL),
- num1, num2, num3: 3 generic numeric health risk factors without specifying their meaning explicitly, e.g., stepcounts, triglycerides, resting heartrate, etc.
- binary: a generic binary health risk factor, e.g., smokers, foreign born, etc.,


Creation of a synthetic health dataset

(sbp)		$\left(\left(125 \right) \right)$	(15^2)	$15 \cdot 0.25 \rho$
$\log(\texttt{bmi})$	$\sim N$	$\left(\left(3.2 \right) \right)$	$(15 \cdot 0.25 \rho$	$\left. \begin{array}{c} 15 \cdot 0.25 \rho \\ 0.25^2 \end{array} \right) \right)$



$$\mu^*(\boldsymbol{x}) = \exp\left(\log(\text{QRISK3}(\boldsymbol{x})) + r(\text{age}) + 16(\text{num1} - 0.5)^4 + 4(\text{num2} - 0.5)^2\text{num3} + \text{num3} + \text{binary} - 1.65\right)$$

÷

Model 1: Logistic regression/generalized linear model (GLM)

$$\mu_1(\boldsymbol{x}) = \frac{1}{1 + \exp(-\beta_0 - \beta_1 x_1 - \dots - \beta_k x_k)} , \text{ or equivalently}$$
$$\logit(\mu_1(\boldsymbol{x})) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k ,$$

import statsmodels.formula.api as sm
log_reg = sm.logit(formula="E~SBP+BMI+I(BMI**2)", data=time_to_event_train).fit()
pred = log_reg.predict(time_to_event_test)

Odds/log-odds

$$\text{odds}(y = 1 \mid \boldsymbol{x}) := \frac{P(y = 1 \mid \boldsymbol{x})}{P(y = 0 \mid \boldsymbol{x})} = \frac{P(y = 1 \mid \boldsymbol{x})}{1 - P(y = 1 \mid \boldsymbol{x})} \\ \log(\text{odds}(y = 1 \mid \boldsymbol{x})) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k .$$

Odds ratios

Swiss Re

$$\frac{\operatorname{odds}(y=1 \mid (x_1, \dots, x_j+1, \dots, x_k))}{\operatorname{odds}(y=1 \mid \boldsymbol{x})} = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_j (x_j+1) + \dots + \beta_k x_k)}{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}$$
$$= \exp(\beta_j) .$$

id	year	age	gender	bmi	sbp	event	time_to_event
1	2010	35	m	24	120	0	-
1	2011	36	m	24	120	0	-
÷	:	÷	:	÷	:	÷	:
1	2019	44	m	24	120	0	-
2	2010	35	m	33	145	0	7.5
2	2011	36	m	33	145	0	6.5
÷	:	÷	÷	÷	÷	÷	:
2	2017	44	m	33	145	1	0.5
3	2010	35	m	26	125	0	-
3	2011	36	m	26	125	0	-
÷	÷	:	:	÷	:	÷	: ₁₂

Model 2: Cox regression

$$h(t \mid \boldsymbol{x}) = h_0(t) \exp \left(\beta_1 x_1 + \dots + \beta_k x_k\right)$$

import lifelines as ll
cph = ll.CoxPHFitter()
cph.fit(time_to_event, "T", event_col="E", formula="SBP+BMI+I(BMI**2)")
pred = (1 - np.array(cph.predict_survival_function(time_to_event_test))[10,:])

From hazard rates to 10-year risk

$$\mu_2(\boldsymbol{x}) := 1 - \exp\left(-\int_0^{10} h(t \mid \boldsymbol{x}) \, dt\right)$$

Hazard ratios
$$\frac{h_0(t) \exp\left(\beta_1 x_1 + \dots + \beta_j (x_j + 1) + \dots + \beta_k x_k\right)}{h_0(t) \exp\left(\beta_1 x_1 + \dots + \beta_k x_k\right)} = \exp(\beta_j)$$

id	year	age	gender	bmi	sbp		event	time_to_event
1	2010	35	m	24	120		0	-
1	2011	36	m	24	120		0	-
÷	:	÷	÷	÷	:		÷	÷
1	2019	44	m	24	120		0	-
2	2010	35	m	33	145		0	7.5
2	2011	36	m	33	145		0	6.5
÷	:	÷	÷	÷	÷		÷	÷
2	2017	44	m	33	145		1	0.5
3	2010	35	m	26	125		0	-
3	2011	36	m	26	125		0	-
÷		÷			÷		÷	÷
-						_		-

Model 3: Neural networks

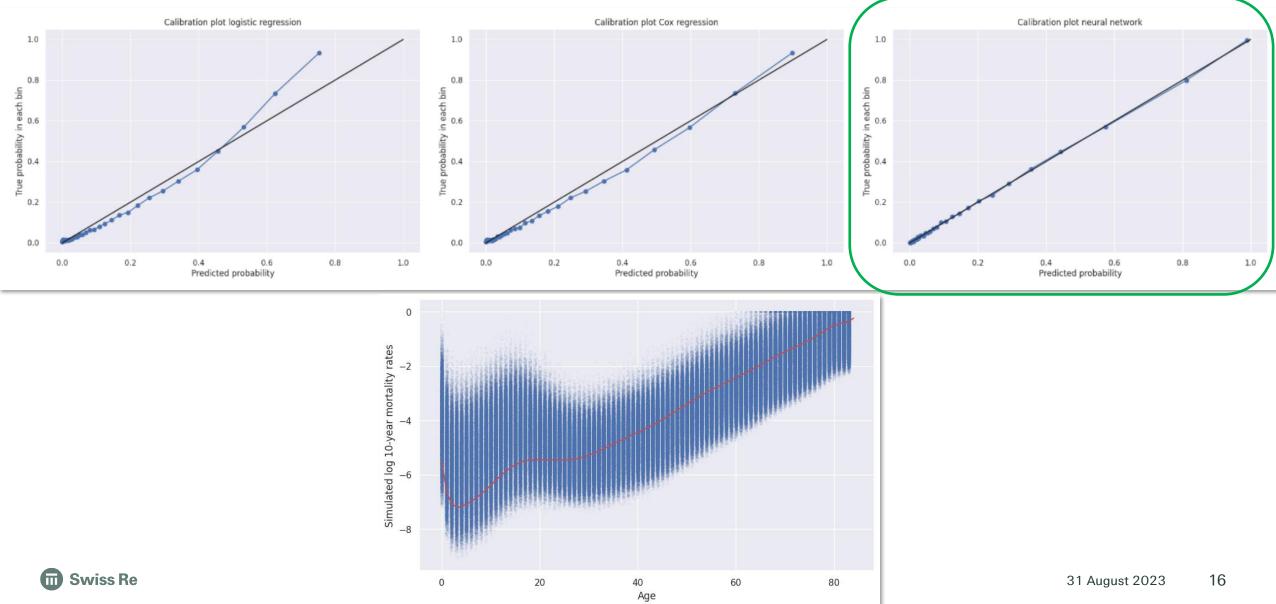
$$\begin{array}{lll} \mu_{3}(\boldsymbol{x}) &=& \boldsymbol{z}^{(4)} \circ \boldsymbol{z}^{(3)} \circ \boldsymbol{z}^{(2)} \circ \boldsymbol{z}^{(1)}(\boldsymbol{x}) \text{ , where} \\ \\ z_{j}^{(\kappa)}(\boldsymbol{z}) &=& \phi^{(\kappa)} \Big(\beta_{0,j}^{(\kappa)} + \sum_{\ell=1}^{q_{\kappa-1}} \beta_{\ell,j}^{(\kappa)} z_{\ell} \Big) \text{ , for } 1 \leq j \leq q_{\kappa} \\ \\ \phi^{(\kappa)}(x) &=& \begin{cases} 1/(1 + \exp(-x)) &, \kappa = 4, \\ x \mathbbm{1}_{\{x \geq 0\}} &, \text{ otherwise,} \end{cases} \\ (q_{4}, \dots, q_{0}) &=& (1, 64, 128, 256, 10) . \end{cases}$$

model.compile(optimizer = opt, loss = 'binary_crossentropy')
model.fit(X_train, y_train, batch_size = 64, epochs = 100, shuffle = True, validation_split = 0.20)
pred = model.predict(X_test).flatten()

Layer	input size	output size	#parameters	input from layer κ
Fully-conn.	10	256	2'816	0
ReLU ϕ	256	256	0	1
Fully-conn.	256	128	32'896	1
ReLU ϕ	128	128	0	2
Fully-conn.	128	64	8'256	2
ReLU ϕ	64	64	0	3
Fully-conn.	64	1	65	3
Sigmoid output	1	1	0	4

id	year	age	gender	bmi	sbp	event	time_to_event
1	2010	35	m	24	120	0	-
1	2011	36	m	24	120	0	-
÷	:	÷	:	:	÷	÷	:
1	2019	44	m	24	120	0	-
2	2010	35	m	33	145	0	7.5
2	2011	36	m	33	145	0	6.5
÷	:	÷	•	:	÷	÷	:
2	2017	44	m	33	145	1	0.5
3	2010	35	m	26	125	0	-
3	2011	36	m	26	125	0	-
÷	÷	÷		:	÷	÷	:

Model performance


Table 3: Performance metrics on the test data subset of \mathcal{D}_1 .								
Performance metric logistic regression $\mu_1(\boldsymbol{x})$ Cox regression $\mu_2(\boldsymbol{x})$ neural net $\mu_3(\boldsymbol{x})$								
ROC AUC	56.17%	56.17%	56.04%					
$MSE \text{ wrt } \log(\mu^*(\boldsymbol{x}))$	0.0016	0.0016	0.0057					
Logistic deviance	9223.88	9223.88	9227.72					

T-11-9. D-f land of T

Table 4: Performance metrics on the test data subset of \mathcal{D}_2 .

Performance metric	logistic regression $\mu_1(\boldsymbol{x})$	Cox regression $\mu_2(\boldsymbol{x})$	neural net $\mu_3(\boldsymbol{x})$
ROC AUC	90.54%	90.55%	92.05%
$\text{MSE wrt } \log(\mu^*(\boldsymbol{x}))$	1.74	1.75	0.11
Logistic deviance	85383	83994	75732

Model performance

31 August 2023

Asymmetric cryptography (public/private key)

• Create a *shared secret s* for symmetric encryption (stream ciphers: Salsa20, RC4, ..., block ciphers: AES, DES, RC5, ...):

Alice: "Secret message" -> $m \in (\mathbb{Z}/2\mathbb{Z})^n$ -> m + f(s) => Bob: m + f(s) + f(s) -> "Secret message" or f(m, s) or f(f(m, s), s)

- Some examples:
 - 1. RSA (Rivest, Shamir, Adleman, 1977): **Factoring** large integers *n* = *pq* (*n* public, *p*, *q* private)
 - 2. ElGamal (1985): **Discrete logarithm**, (multiplicative) group *G*, usually $G \subset (\mathbb{Z}/p\mathbb{Z})^* =: \mathbb{F}_p^*$ of order q = (p-1)/2 with generator *g*, solve $x = \log_g h$ (*g*, *G*, *h* public, *x* private)
 - 3. Elliptic curves methods (1985): Discrete logarithm, where group G is based on elliptic curves
 - 4. Lattice based methods, e.g., LWE ("learning with errors", 2005): Solve $Ax + \varepsilon = b \mod q$ for $x \in (\mathbb{Z}/q\mathbb{Z})^n$, where A is drawn uniformly from $(\mathbb{Z}/q\mathbb{Z})^{m \times n}$, $\varepsilon \in [-q/4, q/4]^m$ is drawn from a "non-trivial" distribution χ , and $b \in (\mathbb{Z}/q\mathbb{Z})^m$ (b, q, A public, x private)
 - 5. Many more examples from <u>NIST standardization</u> proposals for post-quantum cryptography (factorization and discrete logarithm can be calculated very efficiently on quantum computers), e.g., CRYSTALS, 2018, while <u>SIKE</u> had to be removed from the list in August 2022.

RSA

- <u>RSA</u>, 1977 based on **Euler theorem**: $m^{\varphi(n)} = 1 \mod n$ for gcd(m, n) = 1, where $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^*$ (Euler's totient function)
- $-n = p = 7, \ \varphi(p) = p 1$
- $-n = pq = 15, \ \varphi(pq) = (p-1)(q-1)$
- 2 3 0 4 5 6 0 3 2 5 6 8 9 10 11 12 13 14 4
- Choose "random" p, q, d with $gcd(d, \varphi(pq)) = 1$, calculate e with $ed = 1 \mod \varphi(pq)$ with extended Euclidean algorithm, e, n public key, p, q, d private key
- Encryption: message $m < n, m^e \mod n$
- Decryption: $m^{ed} = m \mod n$
- *Proof*: $m^{ed} = m^{k\varphi(n)+1} = m \mod n$
- Calculating d from e and $n \Leftrightarrow$ calculating $\varphi(n) \Leftrightarrow$ factoring n = pq
- Proof idea: " \Leftarrow " 1. $\varphi(pq) = (p-1)(q-1)$, 2. extended Euclidean algorithm $ed + b\varphi(pq) = \gcd(d, \varphi(pq)) = 1$ " \Rightarrow " 1. $\varphi(pq) = -(p+q) + 1 \mod n$, 2. $ed - 1 = k\varphi(n)$ sufficient to factor n (see, e.g., <u>Miller, 1975</u>, ERH)
- There are attacks for, e.g., $q , <math>3d < n^{1/4}$ (Wiener, 1990) and several others (Zhang, 1999)
- Homomorphic encryption RSA example: $(m_1m_2)^e = m_1^e m_2^e \mod n$, in general: $enc(op_1(m_1, m_2)) = op_2(enc(m_1), enc(m_2))$

Key take-aways

- Limited data availability for sensitive personal (Life & Health) data in practice (e.g., nFADP, 1 September 2023)
- 2. For sufficiently large and dense datasets, ML/DL methods outperform traditional models, creating value for policyholders and insurance companies
- 3. Privacy preserving methods can help to access data